
5th European Conference on Case-Based Reasoning, Trento Italy, 6-9 September 2000

Personalized Conversational Case-Based
Recommendation

Mehmet H. Göker1 Cynthia A. Thompson2

1DaimlerChrysler Research & Technology
1510 Page Mill Road, Palo Alto, CA 94304

mehmet.goeker@daimlerchrysler.com

2Center for the Study of Language and Information
Stanford University, Stanford, CA 94305-4115

cthomp@csli.stanford.edu

Abstract: In this paper, we describe the Adaptive Place Advisor, a user
adaptive, conversational recommendation system designed to help users decide
on a destination, specifically a restaurant. We view the selection of destinations
as an interactive, conversational process, with the advisory system inquiring
about desired item characteristics and the human responding. The user model,
which contains preferences regarding items, attributes, values, value
combinations, and diversification, is also acquired during the conversation. The
system enhances the user’s requirements with the user model and retrieves
suitable items from a case-base. If the number of items found by the system is
unsuitable (too high, too low) the next attribute to be constrained or relaxed is
selected based on the information gain associated with the attributes. We also
describe the current status of the system and future work.

1. Motivation

As information becomes abundant, humans are confronted with more difficult
decisions about how to access, navigate through, and select available options. The
sheer number of alternatives often makes a wise choice impossible without some
intelligent computational assistance. In response to this need, there have been
increased efforts to design and implement intelligent aides for filtering web sites (e.g.,
Pazzani, Muramatsu, & Billsus (1996)), news stories (e.g., Lang (1995)), TV listings
(Smyth and Cotter, (1999)), and other information sources. A related line of research
and development has led to recommendation systems (e.g. Burke, Hammond, and
Young (1996), Resnick and Varian (1997), Burke (1999)), which can be used for any
task that requires choice among a large set of predefined items.

Society, on the other hand, is getting more complex and diversified. The
differences in personal preferences, social and educational backgrounds, and private
or professional interests are increasing, and tools to access information are becoming
ubiquitous. This causes the need for intelligent systems that process, filter, and
display available information in a personalized manner. Research on personalization

has led to the development of systems that adapt themselves to the characteristics of
their user: user adaptive systems (c.f. Rich, E. (1979), Langley (1997)).

In this paper we describe the Adaptive Place Advisor, a user adaptive,
conversational recommendation system. The system helps the user to select a
destination, for example a restaurant, from its database by performing a personalized
conversation.

2. Conversational Recommendation Systems

Given a large set of items and a description of the user’s needs, recommendation
systems present to the user a small set of the items that are suited to these
requirements.

The most widely used framework for recommendation systems is the ranked list
approach. In this scheme, the user specifies his needs with one or more keywords and
the system presents a usually long list of results, ordered by their predicted relevance
to the user. This technique comes from information retrieval, where it was originally
designed to help find documents or reports during library research. However, the
basic method is quite general, and it underlies most search engines for the World
Wide Web, which millions now use regularly for many quite different selection tasks.

Yet despite its current popularity, the ranked list scheme is not the only approach
to making recommendations. Consider a situation in which one person, that we will
call the inquirer, asks a second person, that we will call the advisor, for assistance in
deciding on a restaurant at which to have dinner:

We will refer to systems that mimic this approach to recommendation as
conversational recommendation systems (c.f. Aha and Breslow (1997)).

The interaction supported by conversational systems seems quite different from
that found in the ranked list approach. The most important distinction is that the
inquirer never hears about a complete item until only one, or at most a few, choices
remain. Rather than being overwhelmed with items that compete for his attention, the
user interacts with the advisor to narrow down the choices in an iterative, manageable
fashion. This interaction takes the form of a sequence of questions, most designed to
eliminate some items from consideration. Answering these questions plays a similar

Inquirer: Where do you think I should eat tonight?
Advisor: Well, what type of cuisine would you like?
Inquirer: What types are there?
Advisor: Some examples are Chinese, Indian, and Mediterranean.
Inquirer: Oh, maybe Indian.
Advisor: What quality rating would you like?
Inquirer: I don’t care, as long as it’s cheap.
Advisor: How do you want to pay?
Inquirer: No, I think I’d like Chinese instead.
Advisor: Okay, we’ll switch to Chinese food. What city do you prefer?
Inquirer: How about Berkeley?
Advisor: I know three cheap Chinese restaurants in Berkeley. One is the Long

Life Vegi House on 2129 University Avenue. Does that sound alright?
Inquirer: Sure, that sounds fine.

role to giving keywords with the ranked list scheme, but the aim is to remove
alternatives rather than to simply order them. The conversational process can also
help the inquirer better understand his own desires, since thinking about possible
questions and answers may clarify goals in ways a ranked list does not.

Such dialogues seem better for recommendations that must be delivered by speech
rather than visually, such as ones engaged in while the inquirer is driving. They also
seem ideal, independent of modality, for tasks like destination selection or help-desk
applications (c.f. Aha and Breslow (1997), Göker and Roth-Berghofer (1999)), in
which the user needs to converge on at most a few items. On the other hand, ranked
list methods seem more appropriate in situations where information can be presented
visually and for tasks like the selection of web pages or news stories, in which the
user may well want to examine many options.

3. User Adaptive Systems

Raw data usually does not change based on the individual processing it. However, the
resulting information and the manner in which it is presented can be influenced by
personal differences.

Diversification in society has a direct impact on the number of ways in which users
may prefer their data to be processed, selected, and presented. A computer system
should ultimately be sophisticated enough to take individual variations in preferences,
goals, and backgrounds into account and generate personalized information.

User adaptive systems accommodate individual preferences by building and
utilizing user models. These models can represent stereotypical users or individuals,
they can be handcrafted or learned (from questionnaires, ratings, or usage traces), and
they can contain information about previously selected items, preferences regarding
item characteristics, or properties of the users themselves (c.f. Rich (1979)).

The individual differences represented in the user model can have an effect on
computer systems at the data processing level, the information filtering level, and the
information presentation level. The effects can be based on the on the content of the
processed data (content based approach, c.f. Pazzani et.al. (1996), Lang (1995)), on
how comparable data was processed by other users (collaborative approach, c.f.
Konstan, Miller, Maltz et. al. (1997), Billsus and Pazzani (1998)), or on a mixture of
both.

In summary, user adaptive systems are intelligent systems that assess user
preferences and change their behavior accordingly, on one or more of the above
mentioned levels.

4. The Adaptive Place Advisor

Our goal is to develop conversational recommendation systems in which the
interaction between the system and user becomes more efficient over time due to the
system’s adjustments to the preferences of the user.

In the following sections, we describe the Adaptive Place Advisor, a conversational
recommendation system designed to help users decide on a destination. Our system

adapts its behavior on the information filtering level and, by changing the order of the
dialogue operators in the conversation, the information presentation level. While this
approach does extend to item recommendation in general, our initial work has focused
on destination selection as the application domain. Our prototype system aims to help
drivers select a restaurant that meets their preferences. The system is built on a case-
based paradigm and utilizes traces of the interaction with the user to adapt its
similarity calculation, thereby personalizing the retrieval and the conversation.

To be able to recommend a restaurant based on a conversation, the Adaptive Place
Advisor has to
• carry out a conversation and generate a partial restaurant specification, i.e. a

query,

• improve or complement the query with a model of the user’s preferences,

• use this query to retrieve matching restaurants from a database and calculate their
similarity to the user’s request, and

• if the number of retrieved items is not acceptable, select the next attribute to be
constrained or relaxed during a conversation, and

• learn and update the user model based on these interactions.

The responsibilities for these tasks are distributed among various modules of the
system (see Fig. 1). The Dialogue Manager generates, directs and recognizes
conversations. The Retrieval Engine is a case-based system that uses the query that
has been generated and updated by the Dialogue Manager to retrieve items from the
database. The User Modeling System generates the initial (default) query from the
user model and updates the user model based on the conversation history. The Speech
Recognizer and the Speech Generator comprise the natural language processing part
of the system. We used tools from Nuance1 to handle recognition and to generate
appropriate prompts from a pre-recorded set.

1 Nuance Communications, Menlo Park, CA. www.nuance.com

Fig.1: Overall System Architecture of the Adaptive Place Advisor.

Results,
Attribute Information

User Operators
and Values

System Operators
and Values

Dialogue Manager

Speech Generator Speech Recognizer

User Modeling
System

Recognition
GrammarsPrompts

Item
Database

User
Models

Conversation History Updated QueryInitial Query

Retrieval Engine

System Output
(Voice)

User Input
(Voice)

Domain
Model

5. Talking with the Driver

We view the conversational process in terms of heuristic search, similar to constraint
satisfaction in that it requires the successive addition of constraints on solutions, but
also analogous to game playing in that the user and system take turns. Our approach
to destination advice draws heavily on an earlier analysis of the task by Elio and
Haddadi (1998, 1999), which itself borrows ideas from linguistic research on speech
acts (e.g., Searle, (1969)). We extend upon and adapt that work as needed to conform
to the requirements of speech recognition technology and the design of the user
adaptive component.

Our view of conversational recommendation as heuristic search requires us to
specify the search states, operators, and operation-selection heuristics. The initial state
of the search is that of a query based on the user model, where the system and user
have not yet agreed upon any final attribute values. Future states, arrived at by the
operators discussed below, are (more) constrained queries. A state can also consist of
an over constrained query with no matching items, and the final state is reached when
only a few items match the query. The search state also includes dialogue history
information to help maintain a natural and coherent conversational flow.

The majority of dialogue operators are determined by the task-level goal of finding
a small set of items that satisfy the user. The remaining, dialogue-level, moves are
required for interactions that support progress on that task. While one side of the
conversation is determined by the user, the system side of the conversation is
governed by a set of control rules, described in detail in Langley, Thompson, Elio and
Haddadi (1999). These rules select the next operator based on the search state. The
particular instantiation of that operator (for example, which attribute to ask a question
about next) is selected by consulting the Retrieval Engine and conversation history.

We group conversational actions into one operator if they achieve the same effect,
so that two superficially different utterances constitute examples of the same operator
if they take the dialogue in the same direction. Table 1 summarizes the operators
supported by the Adaptive Place Advisor.

Let us first consider the operators available to the dialogue manager for advancing
the conversation. The most obvious, ASK-CONSTRAIN, involves asking the user to
provide a value for an attribute that does not yet have one. In our example
conversation, we saw four examples of this operator, with the advisor asking
questions about the cuisine, quality of the food, payment options, and the location
(city).

In some cases, the process of introducing a constraint can produce a situation in
which no items are satisfactory. When this occurs, the Dialogue Manager applies
ASK-RELAX, which asks whether the user wants to drop a particular constraint.

Another operator, SUGGEST-VALUES, answers a user’s query about possible values
for an attribute. In our example, this occurred in response to the inquirer’s query about
cuisine. Note that, in this case, the advisor lists only a few options rather than all
possible choices. A similar operator, SUGGEST-ATTRIBUTES, responds to a user query
about the possible characteristics of destinations.

Once the conversation has reduced the number of alternatives to a manageable
size, the dialogue manager invokes RECOMMEND-ITEM, an operator that proposes a
complete item to the user. Finally, the CLARIFY operator is invoked when the system

is uncertain about what the user has said, either because of low speech recognition
certainty, or when a value could be applicable to more than one attribute.

Now let us turn to the operators that the system assumes are available to the user.
The most central action the user can take, PROVIDE-CONSTRAIN, involves specifying
the value of some attribute. This can be a value for the attribute just asked for by the
system, a value for a different attribute, or a replacement for a previously specified
value. Our example included four instances of this operator, two in response to
questions about cuisine and city, one answering a question different from the one
posed by the system, and one replacing the previously provided value for cuisine.
Each such answer constrains the items the system considers for presentation to the
user, and thus advances the dialogue toward its goal of identifying a few satisfactory
items.

As we saw above, the Place Advisor does not assume the user will always answer
its questions. If the person decides that the proposed attribute is inappropriate or less
relevant than some other factor, he can reject the attribute or even replace it with
another. The REJECT-CONSTRAIN operator captures explicit rejection. We saw this in
our example when the inquirer did not specify a restaurant quality, but instead replied
‘I don’t care, as long as it’s cheap.’

In addition, the user can explicitly accept or reject other proposals that the system
makes, say for relaxing a certain attribute (ACCEPT-RELAX or REJECT-RELAX), or for
a complete item (ACCEPT-ITEM or REJECT-ITEM). The user can also query about the
available attributes (QUERY-ATTRIBUTES) or about possible values of that attribute

Table 1.Dialogue operators supported in the Adaptive Place Advisor
System Operators
ASK-CONSTRAIN Asks a question to obtain a value for an attribute
ASK-RELAX Asks a question to remove a value of an attribute
SUGGEST- VALUES Suggests a small set of possible values for an

attribute
SUGGEST- ATTRIBUTES Suggests a small set of unconstrained attributes
RECOMMEND-ITEM Recommends an item that satisfies the constraints
CLARIFY Asks a clarifying question if uncertain about the

user’s most recently performed operator
User Operators
PROVIDE-CONSTRAIN Provides a value for an attribute
REJECT-CONSTRAIN Rejects the proposed attribute
ACCEPT-RELAX Accepts the removal of a value of an attribute
REJECT-RELAX Rejects the removal of a value of an attribute
ACCEPT-ITEM Accepts proposed item
REJECT-ITEM Rejects proposed item
QUERY-ATTRIBUTES Asks system for information about possible attributes
QUERY-VALUES Asks system for information about possible values of

an attribute
START-OVER Asks the system to re-initialize the search
QUIT Asks the system to abort the search

(QUERY-VALUES), as we saw for cuisine. Finally, the user can reinitialize (START-
OVER) or end (QUIT) the search.

6. Acquiring, Modeling, and Utilizing User Preferences

The conversation with the user, similar to constraint satisfaction, will ultimately direct
the system to a suitable solution. However, such a conversation can become very
tiring and the quality of the returned result may not be acceptable for each user.

Just as interactions with a friend who knows your concerns can be more directed
and produce better results than those with a stranger, dialogues with the Adaptive
Place Advisor become more efficient and effective over time. Our goal for user
modeling differs from the one commonly assumed in recommendation systems, which
emphasizes improving accuracy or related measures like precision and recall. We
want to improve the subjective quality of both the results and the dialogue process.

While some adaptive recommendation systems (e.g. Pazzani et.al. (1996), Lang
(1995), Linden, Hanks and Lesh (1997), Smyth and Cotter (1999)) require the user to
provide direct feedback to generate the user model, our basic approach is to derive the
preferences of the users from their interactions with the system.

To efficiently provide the users with the solution that matches their needs best, it is
necessary to acquire and model the preferences of the users. A user may have
preferences about:

• specific items,
• the relative importance of an attribute,
• values for an attribute,
• the combination of certain attribute-value pairs, and
• the diversity of the suggested items and values.

Item preferences manifest themselves in the user having a bias for or against a
certain item, independent of its characteristics (item preferences). The preferences
regarding an attribute represent the relative importance a user places on the attribute
while selecting an item (i.e. how important is cuisine vs. price: attribute preferences).
Preferred values show the user’s bias towards certain types of items (e.g. Italian
restaurants vs. French restaurants: value preferences) whereas preferences for certain
property combinations represent certain constraints with respect to the combined
occurrence of characteristics in an item (accepts Mexican restaurants only if they are
cheap: combination preferences). While the item preferences are related to single
items, the attribute, value, and combination preferences are applicable to the retrieval
process in general.

If an item or a value has already been suggested in a recent interaction, it should
only be suggested again after a certain time has passed. While the item, attribute,
value, and combination preferences relate to the suitability of items in general, the
diversification preferences model the suitability of an item or value at a given time.

Item preferences are derived by observing how often a certain item was suggested
and afterwards accepted or rejected by the user. Attribute preferences are updated
according to the item the user selects among the ones the system suggests. If the
selected item was not predicted to be the most similar one to the user’s query, then the

attribute preferences (i.e. weighting factors) have to be adjusted (c.f. Zhang and Yang,
(1998), Bonzano, Cunningham and Smyth (1997), Wettschereck and Aha (1995),
Fiechter and Rogers (2000)). Value preferences are calculated based on the
frequencies of the values the user selects for an attribute. Combination preferences are
derived by looking at the history of selected items and learning association rules.
Diversification preferences are calculated for items and values by determining the
mean time after which a value (value diversification preferences) or item (item
diversification preferences) is explicitly re-selected or rejected.

Instead of modeling a diversification preference on a value level, one could
envision acquiring an attribute level diversification preference. However, we think
that the preference for diversity may change on a value to value basis (e.g. a person
might be willing to eat Italian food much more often than Thai food). Since the value
diversification preferences implicitly override the ones for attributes, we refrain from
modeling diversification for attributes (e.g. one may not care about how often the
price range of the suggested restaurants varies in general, but certainly about the
frequency with which expensive restaurants are suggested).

Since the value preferences can be viewed as a probability distribution over the
values for each attribute, the user model without the diversification preferences (table
2) can be used to create an initial query. In the course of the conversation, this initial
query is refined and constrained with the values the user specifies for each attribute.
Table 3 shows the effects of relevant dialogue operators on the query and the user
model. Please note that only the user operators can update the query and the user
model.

The specification or rejection of values only effects the query and not the user
model directly. The user model is updated by using the last version of the query. The
update is performed after the user has selected or rejected an item or in a situation in

Table 2. Elements of a user model (without the diversification preferences)
User Name Homer

Attributes wi Values and probabilities

Cuisine 0.4 Italian French Turkish Chinese German English

0.3 0.2 0.3 0.1 0.1 0.0

Price Range 0.2 5 4 3 2 1

0.2 0.3 0.3 0.1 0.1

... ..

Parking 0.1 Valet Street Lot

0.5 0.4 0.1

Item # #0815 #5372 #7638 #6399

Accept/Reject 23 / 3 3 / 7 9 / 12 44 / 3 .. / / ..

which the system is unable to find an item meeting the specifications of the user,
under the assumption that the user would have accepted the proposed item, had it
existed.

7. The Retrieval Engine

The Retrieval Engine of the Adaptive Place Advisor retrieves the items that are most
suitable to the users’ request and match his preferences. Retrieval engines in Case-
Based Reasoning systems are usually indifferent to the users’ preferences. They
calculate the similarity of the items in the case-base to the query using the similarity
metrics and weighting factors in the domain model. The Adaptive Place Advisor has
to take the current status of the conversation and preferences of the user into account.

The current status of the conversation determines which of the attributes of the
query have values associated with them. Since these values represent the user’s
explicit choices, we use them generate an SQL-query to retrieve all items that match
these values. The set of items that is returned from the database is used as a case-base
for similarity based retrieval. This allows the content of the case-base to change
between each step in the conversation.

Without the diversification preferences, the similarity between a case C and the
current query Q is calculated as follows:

Table 3. The effects of dialogue operators on the query and the user model
Dialogue Operator Effect on Query / User Model
ACCEPT-ITEM • Update value preferences based on query

• Update attribute preferences using selected item
• Update item preference
• Update item and value diversification preferences

REJECT-ITEM • Update item preference
• Update item diversification preference

PROVIDE-
CONSTRAIN

• Set probability of value for the constrained attribute in
query to one

• Set probability of other values for the attribute in query
to zero

REJECT-CONSTRAIN • Drop attribute, i.e. set attribute preference (weighting
factor) in query to zero

ACCEPT-RELAX • Update value preferences based on latest query
• Update value diversification preferences based on latest

query
• Reset value preferences for the attribute in query from

user model. (Dialogue Manager ensures that the
question is not asked again.)

REJECT-RELAX • No effect, Dialogue Manager selects next attribute
START-OVER • Initialize query with user model

mn

VPw
RCQSim

n

mi

Ai i

C

−

×
×=

∑
=

)(
),((Eq. 1)

where RC is the user’s preference for the specific case, wi is the weighting factor
(attribute preference) for attribute Ai, Am is the first attribute for which the user has
not selected a value yet2, VAi is the value of Ai in the case, and P(VAi) is the user’s
value preference (probability) for this value. The local similarity metric (which
calculates the similarity for each attribute of the case and the query) is replaced by the
probability of the user requesting the value in the case.

To take diversification preferences into account, RC and P(VAi) in equation 1 have
to be extended to incorporate time effects. We define RD and PD(VAi) as follows:

)(1

1
RDRCR tttke

RR CD −−−+
×= (Eq. 2)

)(1

1
)()(

VDVCV tttke
VPVP iiD AA −−−+

×= (Eq. 3)

where tc is the current time, tR and tV are the time when the item or value was last
selected, and tRD and tVD are the time differences the user wants to have between
having the item or value suggested again. RD and PD are in form of a sigmoid function
where kR and kV determine the slope of the curve. By replacing RC and P(VAi) by RD

and PD(VAi) in equation 1, we get a similarity function which incorporates user
specific diversification preferences.

The selection of the attribute to be constrained or relaxed next is based on an
information gain measure. The attribute to constrain is selected by determining the
attribute with the lowest entropy (highest information gain) among the attributes the
user has not yet constrained. If no items were returned from the new database query,
the attribute with the highest entropy (lowest information gain) with respect to the
case base of the last query is selected among the attributes the user has constrained so
far and suggested for relaxation. This insures that the search stays focussed and the
smallest possible number of items is returned from the query as the new case base, i.e.
that information is preserved.

Since we only need to find one item, the entropy of an attribute Ai can be
calculated as:

CBsjiCBsji
s

AV

j
VAVA

CBVPH
ij =

×
=

××−= ∑
∈

1
log

1
)((Eq. 4)

where P(Vj) is the probability of the value of the attribute Ai to be Vj (this is not the
probability coming from the user model, but is based on the items matching the
current constraints), |CBs| is the number of cases above a certain similarity threshold,
and |Ai=Vj|CBs is the number of items in CBs in which Ai has the value Vj.

2 This simplified representation assumes that the attributes A1 to Am-1 are the ones the
user has explicitly specified during the conversation. Obviously the real system does
not require the specified attributes to be in a pre-determined sequence.

8. Summary and Future Work

In this paper, we described the initial version of the Adaptive Place Advisor, an
intelligent assistant designed to help people select a destination, for example a
restaurant. Unlike most recommendation systems, which accept keywords and
produce a ranked list, this one carries out a conversation with the user to progressively
narrow his options. We also described a framework for acquiring and modeling user
preferences and utilizing them for guiding the conversation and during retrieval.

Although we have a detailed design and a partial implementation of the Adaptive
Place Advisor, clearly more work lies ahead. Our current similarity calculation does
not take the effects of combination preferences and of diversification into account.
We believe however, that these play an important role in the user’s approach to
selecting an item and are planning to incorporate them.

The preferences of a user may vary according to the context in which the
interaction with the system is occurring. While some preferences may stay the same
over various contexts, some will be overridden by specific requirements. We are
planning to extend our user model to incorporate a hierarchical structure where
context dependent requirements are derived from a basic user model.

Obviously we need to perform evaluations and measure the effects of the user
model on the conversation and the resulting selection. We are also planning to
transfer the system to similar domains (e.g. selecting books, music) and to translate
the system to German.

Acknowledgements
We thank Pat Langley, Renée Elio, and Afsaneh Haddadi for initial conception and
design of the adaptive place advisor, Cynthia Kuo and Zhao-Ping Tang for help with
the implementation effort, and Stanley Peters for enlightening discussions about the
design of conversational interfaces.

References

Aha D., Breslow L., ‘Refining Conversational Case Libraries’, in Leake D., Plaza E. (eds.)
‘Case-Based Reasoning Research and Development, Second International Conference on
Case-Based Reasoning ICCBR 1997’, pp. 267-278, Springer Verlag, Berlin 1997.

Billsus, D., Pazzani, M. (1998). ‘Learning collaborative information filters’, Proceedings of the
Fifteenth International Conference on Machine Learning (pp. 46-54). Madison, WI: Morgan
Kaufmann.

Bonzano A., Cunningham P., Smyth B., ‘Using Introspective Learning to Improve Retrieval in
CBR: A Case Study in Air Traffic Contol’, in Leake D., Plaza E. (eds.) ‘Case-Based
Reasoning Research and Development, Second International Conference on Case-Based
Reasoning ICCBR 1997’, Springer Verlag, Berlin 1997.

Burke, R., Hammond, K., and Young, B. ‘Knowledge-based navigation of complex information
spaces’, In Proceedings of the 13th National Conference on Artificial Intelligence AAAI96,
pp. 462-468. American Association for Artificial Intelligence, 1996.

Burke R., ‘The Wasabi Personal Shopper: A Case-Based Recommender System’, in:
Proceedings of the 16th National Conference on Artificial Intelligence AAAI99, American
Association for Artificial Intelligence, 1999.

Elio R., Haddadi A., ‘Dialog management for an adaptive database assistant’, Technical
Report 98-3, Daimler-Benz research and Technology Center, Palo Alto, CA, 1998.

Elio R. Haddadi A., ‘On abstract task models and conversation policies’, in Proceedings of the
Agents’99 Workshop on Specifying and Implementing Conversation Policies, Seattle, WA,
1999.

Fiechter C.N., Rogers S., ‘Learning Subjective Functions with Large Margins’, Proceedings of
the Seventeenth International Conference on Machine Learning, June 29-July 2, 2000,
Stanford University, pp. 287-294, Morgan Kaufmann Publishers, 2000

Göker M. H., Roth-Berghofer T., ‘The development and utilization of the case-based help-desk
support system HOMER’, Engineering Applications of Artificial Intelligence 12 (1999), pp.
665-680, Pergamon – Elsevier Science Ltd. 1999.

Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L., and Riedl, J..’GroupLens:
Applying Collaborative Filtering to Usenet News’, Communications of the ACM 40,3
(1997), 77-87.

Lang K, ‘NEWSWEEDER: Learning to filter news’, in ‘Proceedings of the Twelfth Conference on
Machne Learning’, pp.331-339, Lake Tahoe, CA, Morgan Kaufmann, 1995.

Langley, P. ‘Machine learning for adaptive user interfaces’, in: ‘KI97: Proceedings of the 21st
German Annual Conference on Artificial Intelligence’, pp. 53-62. Freiburg, Germany:
Springer, 1997.

Langley, P., Thompson, C., Elio, R. , Haddadi, A., ‘An adaptive conversational interface for
destination advice’ in: ‘Proceedings of the Third International Workshop on Cooperative
Information Agents’, pp. 347-364, Uppsala, Sweden, 1999.

Linden G., Hanks S., Lesh N, ‘Interactive Assesment of User Preference Models: The
Automated Travel Assistant’, in Jameson A., Paris C., Tasso C. (eds.), ‘User Modelling:
Proceedings of the Sixth International Conference, UM97’, Springer Verlag, Vienna, 1997.

Pazzani M., Muramatsu J., Billsus D., ‘Syskill and Webert: Identifying interesting web sites’, in
‘Proceedings of the 13th National Conference on Artificial Intelligence’, pp. 54-61,
American Association for Artificial Intelligence, 1996.

Resnick P., Varian H. (eds), ‘Recommender Systems’, Communications of the ACM, Vol. 40,
No. 3, March 1997.

Rich, E., ‘User modeling via stereotypes’, Cognitive Science, 3, 329-354, 1979.

Searle J., ‘Speech Acts’, New York, Cambridge University Press, 1969.

Smyth B., Cotter P., ‘Surfing the Digital Wave, Generating Personalised TV Listings using
Collaborative, Case-Based Recommendation’, in: Althoff K.D., Bergmann R., Branting K.
(eds), ‘Case-Based Reasoning Research and Development, Proceedings of the Third
International Conference on Case-Based Reasoning ICCBR99’, pp. 561-571, Springer
Verlag, Berlin 1999.

Wettschereck D., Aha D., ‘Weighting Features’, in M. Veloso & A. Aamodt eds., "Advances in
Case-Based Reasoning, Proceedings of the First International Conference on Case-Based
Reasoning ICCBR95", pp347-358, Springer Verlag, Berlin, 1995

Zhang Z., Yang Q., ‘Towards Lifetime Maintenance of Case Base Indexes for Continual Case
Based Reasoning’, in ‘Proceedings of the 1998 International Conference on AI
Methodologies, Systems and Applications (AIMSA98)’, Bulgaria, October 1998.

